4 Resultados

4.1. Análise das soluções sólidas: $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$, $Al_{2x}Cr_{2-2x}Mo_3O_{12}$, e $Al_{2x}Fe_{2-2x}Mo_3O_{12}$.

4.1.1. Análise da solubilidade utilizando MEV

A análise por microscopia eletrônica de varredura (MEV) e EDS mostra a morfologia das soluções sólidas investigadas e que se produziram produtos monofásicos. Nas Figuras 29 e 30 estão apresentadas as micrografias para os compostos puros e para as misturas com fração x = 0,5. Observa-se que todas as amostras apresentaram crescimento equiaxial dos grãos. O maior tamanho de partícula foi observado para o $Al_2Mo_3O_{12}$.

Figura 29 – Micrografias de feixe retro espalhado no MEV. à esquerda, $Cr_2Mo_3O_{12}$, à direita, $Al_2Mo_3O_{12}$.

Figura 30 - Micrografias de feixe retro espalhado no MEV. Acima: à esquerda, $Fe_2Mo_3O_{12}$, à direita, AlCrMo_3O_{12}. Abaixo: à esquerda, $FeCrMo_3O_{12}$, à direita, AlFeMo_3O_{12}.

4.1.2. Caracterização Estrutural por Difração de Raios-X

4.1.2.1.

Determinação dos parâmetros de rede na estrutura monoclínica da solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂

Os difratogramas obtidos a temperatura ambiente para a solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ são mostrados na Figura 31. Observa-se qualitativamente que as linhas de difração são deslocadas para 20 maiores (à direita) com o aumento do conteúdo de Cr, indicando que o molibdato de cromo possui célula unitária

menor que o molibdato de ferro. Este resultado é esperado considerando que na posição octaédrica o raio iônico do Fe³⁺ é 0,645Å e o do Cr³⁺ é 0,615Å [95].

Os difratogramas ajustados por refinamento de LeBail [84] utilizando o software TOPAS [85], forneceram os parâmetros de rede *a*, *b*, *c*, e β , assim como o volume para a estrutura monoclínica, grupo espacial P2₁/a. Os parâmetros de rede estão registrados na Tabela 8 e ilustrados nas Figuras 32 - 36 (os desvios padrão estimados, $\sigma_{estimado}$, estão representados nas figuras, mas eles são pequenos e não observáveis).

Observa-se que os parâmetros da célula unitária e o volume, mesmo com pequenos desvios, diminuem linearmente com o conteúdo de Cr de acordo com a lei de Vegard para soluções sólidas substitucionais.

Figura 31 – Difratograma da solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂ a temperatura ambiente.

Figura 32 – Variação do eixo "a" (estrutura monoclínica – P2₁/a) para a solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$.

Figura 33 - Variação do eixo "b" (estrutura monoclínica – P2₁/a) para a solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$.

Figura 34 - Variação do eixo "c" (estrutura monoclínica – P2₁/a) para a solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$.

Figura 35-Variação do ângulo " β " (estrutura monoclínica – P2₁/a) para a solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂.

Figura 36 - Variação do volume da célula unitária "V" (estrutura monoclínica – P2₁/a) para a solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂.

4.1.2.2. Determinação dos parâmetros de rede na estrutura monoclínica da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂

Os difratogramas obtidos a temperatura ambiente para a solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$ são mostrados na Figura 37. Observa-se qualitativamente que as linhas de difração são deslocadas para 20 maiores com o aumento do conteúdo de AI, indicando que o molibdato de alumínio possui célula unitária menor que o molibdato de ferro. Este resultado é esperado considerando que na posição octaédrica o raio iônico do AI^{3+} é 0,535Å e o do Cr^{3+} é 0,615Å [94].

Os difratogramas, ajustados por refinamento de LeBail [84] utilizando o software TOPAS [85], forneceram os parâmetros de rede *a*, *b*, *c*, e β , assim como o volume para a estrutura monoclínica, grupo espacial P2₁/a. Os parâmetros de rede estão registrados na Tabela 9 e ilustrados Figuras 38– 42 (os desvios padrão estimados, $\sigma_{estimado}$, estão representados nas figuras, mas são pequenos e não observáveis).

Observa-se que os parâmetros da célula unitária e o volume, mesmo com pequenos desvios, diminuem linearmente com o conteúdo de Al de acordo com a lei de Vegard para soluções sólidas substitucionais.

Figura 37 - Difratograma da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂.

Figura 38 - Variação do eixo "a" (estrutura monoclínica – P2₁/a) para a solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$.

Figura 39 - Variação do eixo "b" (estrutura monoclínica – P2₁/a) para a solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$.

Figura 40 - Variação do eixo "c" (estrutura monoclínica – P2₁/a) para a solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$.

Figura 41 - Variação do ângulo " β "(estrutura monoclínica – P2₁/a) para a solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂.

Figura 42 - Variação do volume da célula unitária "V" (estrutura monoclínica – $P2_1/a$) para a solução sólida $Al_{2x}Cr_{2-2x}Mo_3O_{12}$.

Determinação dos parâmetros de rede na estrutura monoclínica da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

Os difratogramas obtidos a temperatura ambiente para a solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂ são mostrados na Figura 43. Observa-se qualitativamente que as linhas de difração são deslocadas para 20 maiores com o aumento do conteúdo de AI, indicando que o molibdato de alumínio possui célula unitária menor que o molibdato de ferro. Este resultado é esperado considerando que na posição octaédrica o raio iônico do Al³⁺ é 0,54Å e o do Fe³⁺ é 0,65Å [94].

Os difratogramas, ajustados por refinamento de LeBail [84] utilizando o software TOPAS [85], forneceram os parâmetros de rede a, b, c, e β , assim como o volume para a estrutura monoclínica, grupo espacial P21/a. Os parâmetros de rede estão registrados na Tabela 10 e ilustrados Figuras 44 - 48 (os desvios padrão estimados, σestimado, estão representados nas figuras, mas são pequenos e não observáveis).

Observa-se que os parâmetros da célula unitária e o volume, mesmo com pequenos desvios, diminuem linearmente com o conteúdo de Al de acordo com a lei de Vegard para soluções sólidas substitucionais.

Figura 43 - Difratograma da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

Figura 44 - Variação do eixo "a" (estrutura monoclínica – P2₁/a) para a solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$.

Figura 45 - Variação do eixo "b" (estrutura monoclínica – P2₁/a) para a solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$.

Figura 46 - Variação do eixo "c" (estrutura monoclínica – P2₁/a) para a solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$.

Figura 47 - Variação do ângulo " β " (estrutura monoclínica – P2₁/a) para a solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

Figura 48 - Variação do volume da célula unitária "V" (estrutura monoclínica – $P2_1/a$) para a solução sólida $Al_{2x}Fe_{2-2x}Mo_3O_{12}$.

	Fração [x]	a [Å]	σestimado	b [Å]	σestimado	c [Å]	σ _{estimado}	V [ų]	$\sigma_{estimado}$	β [graus]	σ _{estimado}
$Fe_2Mo_3O_{12}$	0,0	15,69125	0,00069	9,23374	0,00037	18,21329	0,00075	2155,57	0,17	125,2299	0,0025
	0,1	15,67712	0,00063	9,22656	0,00033	18,20150	0,00074	2150,33	0,16	125,2385	0,0023
	0,3	15,65252	0,00043	9,21201	0,00023	18,18360	0,00051	2141,13	0,11	125,2513	0,0015
	0,5	15,63232	0,00052	9,20055	0,00028	18,16501	0,00063	2133,02	0,13	125,2704	0,0019
	0,7	15,60303	0,00051	9,18347	0,00026	18,13910	0,00058	2121,85	0,12	125,2777	0,0018
	0,9	15,57965	0,00041	9,16964	0,00023	18,11856	0,00053	2112,82	0,11	125,2879	0,0016
$Cr_2Mo_3O_{12}$	1,0	15,56610	0,00047	9,16012	0,00024	18,10342	0,00054	2106,97	0,11	125,2901	0,0017

Tabela 8 – Parâmetros de rede da solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂

Tabela 9 - Parâmetros de rede da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂

	Fração [x]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	$\sigma_{estimado}$	β [graus]	$\sigma_{estimado}$
$Cr_2Mo_3O_{12}$	0,0	15,56610	0,00047	9,16012	0,00024	18,10342	0,00054	2106,97	0,11	125,2901	0,0017
	0,1	15,54761	0,00053	9,14847	0,00027	18,08045	0,00060	2098,80	0,13	125,3026	0,0019
	0,3	15,51173	0,00057	9,12307	0,00028	18,03422	0,00065	2082,33	0,14	125,3210	0,0021
	0,5	15,47023	0,00048	9,09683	0,00025	17,98301	0,00055	2064,63	0,12	125,3316	0,0018
	0,7	15,43283	0,00055	9,07416	0,00027	17,94097	0,00062	2049,36	0,13	125,3452	0,0020
	0,9	15,39635	0,00052	9,05034	0,00024	17,89565	0,00057	2033,59	0,12	125,3616	0,0021
$AI_2Mo_3O_{12}$	1,0	15,37826	0,00041	9,04006	0,00020	17,87480	0,00049	2026,30	0,10	125,3705	0,0017

Tabela 10 - Parâmetros de rede da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

	Fração [x]	a [Å]	σestimado	b [Å]	σestimado	c [Å]	σestimado	V [ų]	σestimado	β [graus]	σestimado
$Fe_2Mo_3O_{12}$	0,0	15,69125	0,00069	9,23374	0,00037	18,21329	0,00075	2155,57	0,17	125,2299	0,0025
	0,1	15,65578	0,00064	9,21073	0,00036	18,17360	0,00075	2140,46	0,16	125,2376	0,0025
	0,3	15,60290	0,00141	9,17583	0,00057	18,10584	0,00125	2114,06	0,29	125,3587	0,0041
	0,5	15,52819	0,00088	9,13105	0,00044	18,03235	0,00097	2086,47	0,21	125,3084	0,0033
	0,7	15,47070	0,00084	9,09498	0,00039	17,97151	0,00084	2062,49	0,19	125,3500	0,0032
	0,9	15,40932	0,00073	9,05833	0,00032	17,90577	0,00073	2038,24	0,16	125,3619	0,0029
$AI_2Mo_3O_{12}$	1,0	15,37826	0,00041	9,04006	0,00020	17,87480	0,00049	2026,30	0,10	125,3705	0,0017

4.1.3. Análise térmica por DSC

4.1.3.1.

Determinação da temperatura de transição de fase e entalpia de transição da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$

A transição de fase da estrutura monoclínica para ortorrômbica da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ é reversível. As temperaturas de transição de fase e as respectivas entalpias de transição (ΔH_T) estão registradas na Tabela 11 e ilustradas na Figura 49. Observa-se que a temperatura de transição de fase e a entalpia de transição diminuim linearmente com o aumento no conteúdo de Cr^{3+} .

Tabela 11 – Temperatura de transição de fase da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ obtidos por DSC.

	Fração (x)	Temp. Transição de Fase [°C]	∆H⊤ (kJ/mol)
$Fe_2Mo_3O_{12}$	0	512,5	1,76
	0,1	500,3	1,70
	0,3	483,5	1,58
	0,5	465,2	1,51
	0,7	441,2	1,39
	0,9	418,2	1,28
$Cr_2Mo_3O_{12}$	1	403,0	1,25

Figura 49 – Temperatura de transição de fase (\Box) e entalpia de transição (•) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$

4.1.3.2.

Determinação da temperatura de transição de fase e entalpia de transição da solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$

A transição de fase da estrutura monoclínica para ortorrômbica da solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$ é reversível. As temperaturas de transição de fase e as respectivas entalpias de transição (ΔH_T) estão registradas na Tabela 12 e ilustradas na Figura 50. Observa-se que a temperatura de transição de fase e a entalpia de transição diminuim linearmente com o aumento no conteúdo de AI^{3+} .

Tabela 12 - Temperatura de transição de fase da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂ obtidos por DSC.

	Fração (x)	Temp. Transição de Fase [°C]	∆H⊤ (kJ/mol)
$Cr_2Mo_3O_{12}$	0	403,0	1,25
	0,1	374,0	1,15
	0,3	327,8	1,04
	0,5	283,7	0,90
	0,7	244,3	0,82
	0,9	214,4	0,68
$AI_2Mo_3O_{12}$	1	200,2	0,63

Figura 50 - Temperatura de transição de fase (\Box) e entalpia de transição (\bullet) da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂

4.1.3.3.

Determinação da temperatura de transição de fase e entalpia de transição da solução sólida $Al_{2x}Fe_{2-2x}Mo_3O_{12}$

A transição de fase da estrutura monoclínica para ortorrômbica da solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$ é reversível. As temperaturas de transição de fase e as respectivas entalpias de transição (ΔH_T) estão registradas na Tabela 13 e ilustradas na Figura 51. Observa-se que a temperatura de transição de fase e a entalpia de transição diminuim linearmente com o aumento no conteúdo de AI^{3+} .

Tabela 13 - Temperatura de transição de fase da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂ obtidos por DSC.

	Fração (x)	Temp. Transição de Fase [°C]	∆H⊤ (kJ/mol)
$Fe_2Mo_3O_{12}$	0	512,0	1,76
	0,1	484,1	1,59
	0,2	456,6	1,41
	0,3	430,2	1,28
	0,4	398,9	1,19
	0,5	368,6	1,09
	0,6	336,4	1,00
	0,7	305,3	0,91
	0,8	272,8	0,82
	0,9	239,8	0,75
$AI_2Mo_3O_{12}$	1	200,2	0,63

Figura 51 - Temperatura de transição de fase (\Box) e entalpia de transição (\bullet) da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

4.1.4. Difração de raios-X utilizando luz síncrotron *in situ* a alta temperatura

4.1.4.1. Determinação dos parâmetros de rede na estrutura ortorrômbica em função da temperatura da solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂

A solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ foi analisada por difração de raios-X utilizando luz síncrotron *in situ* a alta temperatura para as frações x = 0; 0,3; 0,5; 0,7 e 1. Os difratogramas foram obtidos a temperaturas acima da transição de fase, na estrutura ortorrômbica, como registrado na Tabela 14.

Tabela 14 – Temperaturas avaliadas nos testes de difração de raios-X a alta temperatura para a solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$

Solução	Temperatura (°C)							
sólida	T ₁	T ₂	T ₃	T ₄				
$Fe_2Mo_3O_{12}$	550	600	650	750				
x = 0,3	500	580	650	740				
x = 0,5	480	550	650	740				
x = 0,7	450	550	650	740				
$Cr_2Mo_3O_{12}$	420	550	650	750				

Figura 52 – Difratogramas do $Cr_2Mo_3O_{12}$ a 420, 500, 650 e 750°C obtidos por difração de raios-X usando luz síncrotron.

Na Figura 52 apresentam-se os difratogramas do $Cr_2Mo_3O_{12}$ nas respectivas temperaturas. Os parâmetros de rede (a, b, c) e o volume na estrutura ortorrômbica (Pbcn) foram determinados por refinamento de LeBail [84] utilizando o software TOPAS [85]. Os valores dos parâmetros de rede da solução sólida $Cr_{2x}Fe_{2\cdot2x}Mo_3O_{12}$ estão registrados nas Tabelas 15 – 19. A variação dos parâmetros de rede em função da temperatura é apresentada nas Figuras 53 – 55, e a variação do volume da célula unitária, na Figura 56.

Dos resultados obtidos observa-se que a solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂ apresenta expansão térmica ao longo do eixo cristalográfico "a" e contração ao longo dos eixos "b" e "c" resultando numa pequena expansão térmica volumétrica "intrínseca" positiva. Nota-se que para o Fe₂Mo₃O₁₂ existe expansão térmica quase zero ao longo do eixo "b", que vai ficando negativa conforme aumenta o conteúdo de Cr na solução sólida; o mesmo ocorre com o eixo cristalográfico "c".

Tabela 15 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Fe_2Mo_3O_{12}$.

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σestimado	c [Å]	σestimado	V [ų]	σ _{estimado}
550	12,87443	0,00004	9,24823	0,00003	9,33618	0,00003	1111,619	0,007
600	12,87949	0,00003	9,24813	0,00002	9,33495	0,00002	1111,898	0,005
650	12,88453	0,00003	9,24810	0,00002	9,33398	0,00002	1112,213	0,005
750	12,89342	0,00003	9,24831	0,00002	9,33192	0,00002	1112,760	0,005

Tabela 16 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$, para x = 0,3 ($Cr_{0,6}Fe_{1,4}Mo_3O_{12}$).

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	σ _{estimado}
500	12,82683	0,00004	9,22454	0,00003	9,31179	0,00003	1101,787	0,006
580	12,83470	0,00005	9,22379	0,00004	9,30983	0,00004	1102,140	0,007
650	12,84054	0,00005	9,22345	0,00003	9,30847	0,00003	1102,440	0,007
740	12,84818	0,00007	9,22331	0,00005	9,30698	0,00005	1102,903	0,010

Tabela 17 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$, para x = 0,5 (CrFeMo₃O₁₂).

Temperatura [°C]]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	σ _{estimado}
480	12,79905	0,00004	9,20942	0,00003	9,29600	0,00003	1095,737	0,006
550	12,80544	0,00004	9,20870	0,00003	9,29410	0,00003	1095,974	0,007
650	12,81372	0,00004	9,20781	0,00003	9,29195	0,00003	1096,322	0,006
740	12,82119	0,00004	9,20762	0,00003	9,29063	0,00003	1096,784	0,005

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	$\sigma_{estimado}$
450	12,76891	0,00005	9,19423	0,00004	9,27959	0,00003	1089,428	0,007
550	12,77786	0,00005	9,19306	0,00003	9,27723	0,00003	1089,774	0,007
650	12,78570	0,00005	9,19169	0,00003	9,27496	0,00003	1090,013	0,007
740	12,79261	0.00004	9.19119	0.00003	9.27351	0.00003	1090.373	0.007

Tabela 18 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$, para x = 0,7 ($Cr_{1,4}Fe_{0,6}Mo_3O_{12}$).

Tabela 19 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_2Mo_3O_{12}$

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	$\sigma_{estimado}$	c [Å]	σ _{estimado}	V [ų]	σ _{estimado}
420	12,72809	0,00004	9,17337	0,00003	9,25678	0,00003	1080,818	0,005
550	12,73905	0,00003	9,17116	0,00002	9,25366	0,00002	1081,123	0,005
650	12,74676	0,00003	9,16959	0,00002	9,25152	0,00002	1081,341	0,005
750	12,75359	0,00003	9,16815	0,00002	9,24943	0,00002	1081,506	0,005

Figura 53 - Variação do eixo "a" (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 54 – Variação do eixo "b" (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 55 - Variação do eixo "c" (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 56 - Variação do volume da célula unitária (estrutura ortorrômbica – Pbcn) da solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂ em função da temperatura.

4.1.4.2. Determinação dos parâmetros de rede na estrutura ortorrômbica da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂

A solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$ foi analisada por difração de raios-X utilizando luz síncrotron *in situ* a alta temperatura para as frações x = 0; 0,3; 0,5; 0,7 e 1. Os difratogramas foram obtidos a temperaturas acima da transição de fase, na estrutura ortorrômbica, como registrado na Tabela 20.

Tabela 20 - Temperaturas avaliadas nos testes de difração de raios-X a alta temperatura para a solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$

Solução		Temperatura (°C)						
sólida	T ₁	T ₂	T ₃	T ₄				
Cr ₂ Mo ₃ O ₁₂	420	550	650	750				
x = 0,3	350	500	650	740				
x = 0,5	300	470	650	740				
x = 0,7	260	450	650	740				
Al ₂ Mo ₃ O ₁₂	250	450	650					

Os parâmetros de rede (a, b, c) e o volume na estrutura ortorrômbica (Pbcn) foram determinados por refinamento de LeBail [84] utilizando o software TOPAS [85].

Os valores dos parâmetros de rede da solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$ estão registrados nas Tabelas 21, 23 – 26. A variação dos parâmetros de rede em função da temperatura é apresentada nas Figuras 57 – 59, e a variação do volume da célula unitária, na Figura 60.

Dos resultados obtidos observa-se que a solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$ apresenta expansão térmica ao longo do eixo cristalográfico "a" e contração ao longo do eixo "c". Nota-se que o eixo "b" apresenta diferente comportamento, para valores de x < 0,5 existe contração, para x = 0,5, expansão térmica quase zero e para x > 0,5 expansão térmica positiva, ou seja, o eixo "b" vai se tornando positivo conforme aumenta o conteúdo de Al na solução sólida.

Tabela 21 – Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Al_{2x}Cr_{2-2x}Mo_3O_{12}$, para x = 0,3. ($Al_{0,6}Cr_{1,4}Mo_3O_{12}$)

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	σ _{estimado}
350	12,67339	0,00007	9,12576	0,00005	9,20936	0,00005	1065,102	0,010
500	12,68685	0,00006	9,12475	0,00005	9,20698	0,00004	1065,841	0,009
650	12,69858	0,00005	9,12408	0,00006	9,20482	0,00004	1066,497	0,009
740	12,70541	0,00007	9,12344	0,00005	9,20323	0,00005	1066,810	0,010

Tabela 22 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Al_{2x}Cr_{2-2x}Mo_3O_{12}$, para x = 0,5 (AlCrMo₃O₁₂)

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	σ _{estimado}
300	12,63603	0,00007	9,09479	0,00006	9,17827	0,00005	1054,785	0,011
470	12,65151	0,00005	9,09431	0,00005	9,17620	0,00007	1055,785	0,010
650	12,66607	0,00006	9,09466	0,00005	9,17427	0,00005	1056,817	0,009
740	12,67305	0,00006	9,09507	0,00004	9,17368	0,00004	1057,380	0,008

$AI_{2x}Cr_{2-2x}Mo_{3}O_{12}$, para x = 0,7. ($AI_{1,4}Cr_{0,6}Mo_{3}O_{12}$)									

Tabela 23 - Parâmetros de rede (estrutura ortorrômbica - Pbcn) da solução sólida

[°C]	a[A]	σ _{estimado}	D [A]	σ _{estimado}	C[A]	σ _{estimado}	V [A]	σ _{estimado}
260	12,60032	0,00007	9,06585	0,00005	9,14913	0,00005	1045,130	0,010
450	12,61828	0,00006	9,06603	0,00005	9,14732	0,00005	1046,433	0,010
650	12,63523	0,00006	9,06743	0,00005	9,14600	0,00005	1047,849	0,009
740	12,64314	0,00007	9,06909	0,00005	9,14652	0,00005	1048,756	0,010

Tabela 24 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $Al_2Mo_3O_{12}$.

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	$\sigma_{estimado}$	c [Å]	σ _{estimado}	V [ų]	$\sigma_{estimado}$
250	12,55192	0,00004	9,02527	0,00003	9,10727	0,00003	1031,713	0,007
450	12,57159	0,00004	9,02534	0,00003	9,10508	0,00003	1033,089	0,005
650	12,58880	0,00003	9,02732	0,00003	9,10385	0,00002	1034,591	0,005

Figura 57 - Variação do eixo "a" (estrutura ortorrômbica – Pbcn) da solução sólida $AI_{2x}Cr_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 58 - Variação do eixo "b" (estrutura ortorrômbica – Pbcn) da solução sólida $Al_{2x}Cr_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 59 - Variação do eixo "c" (estrutura ortorrômbica – Pbcn) da solução sólida $Al_{2x}Cr_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 60 - Variação do volume da célula unitária (estrutura ortorrômbica – Pbcn) da solução sólida Cr_{2x}Fe_{2-2x}Mo₃O₁₂ em função da temperatura.

4.1.4.3. Determinação dos parâmetros de rede na estrutura ortorrômbica da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

A solução sólida $Al_{2x}Fe_{2-2x}Mo_3O_{12}$ foi analisada por difração de raios-X utilizando luz síncrotron *in situ* a alta temperatura para as frações x = 0; 0,5; 0,7 e 1. Os difratogramas foram obtidos a temperaturas acima da transição de fase, na estrutura ortorrômbica, como registrado na Tabela 25.

Tabela 25 - Temperaturas avaliadas nos testes de difração de raios-X a alta temperatura para a solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂.

Solução	Temperatura (°C)						
sólida	T ₁	T ₂	T ₃	T ₄			
$Fe_2Mo_3O_{12}$	550	600	650	750			
x = 0,5	380	500	650	740			
x = 0,7	320	500	650	740			
$AI_2Mo_3O_{12}$	250	450	650				

Os parâmetros de rede (a, b, c) e o volume na estrutura ortorrômbica (Pbcn) foram determinados por refinamento de LeBail [84] utilizando o software TOPAS [85].

Os valores dos parâmetros de rede da solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$ estão registrados nas Tabelas 19, 26 – 27. A variação dos parâmetros de rede em função da temperatura é apresentada nas Figuras 61 – 63, e a variação do volume da célula unitária, na Figura 64.

Dos resultados obtidos observa-se que a solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$ apresenta expansão térmica positiva ao longo do eixo cristalográfico "a" e contração ao longo do eixo "c". Nota-se que para o $Fe_2Mo_3O_{12}$ (x = 0) existe expansão térmica quase zero ao longo do eixo "b", que vai ficando positiva conforme aumenta o conteúdo de AI na solução sólida. Para este sistema a expansão térmica volumétrica "intrínseca" é ligeiramente positiva.

Tabela 26 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$, para x = 0,5. (AIFeMo₃O₁₂)

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	σ _{estimado}
380	12,70518	0,00009	9,12727	0,00008	9,21549	0,00006	1068,662	0,015
500	12,71827	0,00008	9,12997	0,00007	9,21584	0,00008	1070,120	0,012
650	12,73297	0,00008	9,13203	0,00007	9,21514	0,00007	1071,516	0,014
740	12,74178	0,00010	9,13418	0,00010	9,21532	0,00009	1072,532	0,018

Tabela 27 - Parâmetros de rede (estrutura ortorrômbica – Pbcn) da solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$, para x = 0,7. ($AI_{1,4}Fe_{0,6}Mo_3O_{12}$)

Temperatura [°C]	a [Å]	σ _{estimado}	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	$\sigma_{estimado}$
320	12,64051	0,00010	9,08235	0,00008	9,16844	0,00008	1052,588	0,015
500	12,65785	0,00008	9,08489	0,00007	9,16800	0,00006	1054,276	0,013
650	12,67241	0,00007	9,08781	0,00006	9,16801	0,00006	1055,828	0,011
740	12,68249	0,00008	9,09077	0,00007	9,16935	0,00006	1057,168	0,013

Figura 61 - Variação do eixo "a" (estrutura ortorrômbica – Pbcn) da solução sólida $Al_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 62 - - Variação do eixo "b" (estrutura ortorrômbica – Pbcn) da solução sólida $Al_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 63 - - Variação do eixo "c" (estrutura ortorrômbica – Pbcn) da solução sólida $AI_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

Figura 64 - Variação do volume da célula unitária (estrutura ortorrômbica – Pbcn) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ em função da temperatura.

88

4.1.5. Determinação do Coeficiente de Expansão Térmica

Para cada solução sólida, a variação dos parâmetros de rede em função da temperatura foi definida por uma função linear ou polinomial de segunda ordem, considerou-se o melhor ajuste. Os coeficientes de expansão térmica linear e volumétrica foram obtidos a partir dos dados calculados desta função definida a partir dos gráficos obtidos na seção 4.1.4. Logo, para a determinação do coeficiente de expansão térmica linear aplicou-se a equação (2.4) e para o coeficiente de expansão volumétrico, a equação (2.1).

4.1.5.1. Determinação do Coeficiente de Expansão Térmica da solução sólida Fe_{2x}Cr_{2-2x}Mo₃O₁₂

Os coeficientes de expansão térmica linear (α_a , α_b , α_c) e volumétrica (α_V) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ estão registrados na Tabela 28 e ilustrados na Figura 65. Observa-se que com um aumento no conteúdo de Cr^{3+} na solução sólida, o coeficiente de expansão térmica linear, α_a diminui, α_b torna-se mais negativo e α_c torna-se levemente mais negativo. Em geral, a solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$ apresentou baixa expansão térmica ($\alpha < 2x10^{-6}/^{\circ}C$), assim como para o molibdato de cromo ($\alpha_1 = \alpha_V/3 = 0.65 \times 10^{-6}/^{\circ}C$) e para o molibdato de ferro ($\alpha_1 = \alpha_V/3 = 1.72 \times 10^{-6}/^{\circ}C$).

Tabela 28 – Valores dos coeficientes de expansão térmica linear e volumétrica (α_a , α_b , α_c , α_V ,) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$.

	Fração (x)	α _a [^o C ⁻¹] x 10 ⁻⁶	α _b [^o C ⁻¹] x 10 ⁻⁶	α _c [^o C ⁻¹] x 10 ⁻⁶	α _V [^o C ⁻¹] x 10 ⁻⁶	α _V /3 [°C ⁻¹] x 10 ⁻⁶
$Fe_2Mo_3O_{12}$	0,0	7,36	-0,14	-2,25	5,16	1,72
	0,3	6,90	-0,55	-2,14	4,20	1,40
	0,5	6,62	-0,77	-2,22	3,63	1,21
	0,7	6,38	-1,18	-2,29	2,90	0,97
Cr ₂ Mo ₃ O ₁₂	1,0	6,09	-1,73	-2,40	1,95	0,65

Figura 65 – Coeficientes de expansão térmica linear e volumétrica (α_a , α_b , α_c , $\alpha_V/3$,) da solução sólida $Cr_{2x}Fe_{2-2x}Mo_3O_{12}$.

4.1.5.2. Determinação do Coeficiente de Expansão Térmica da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂

Os coeficientes de expansão térmica linear (α_a , α_b , α_c) e volumétrica (α_V) da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂ estão registrados na Tabela 29 e ilustrados na Figura 66. Observa-se que com um aumento no conteúdo de Al³⁺ na solução sólida, o coeficiente de expansão térmica linear, α_a aumenta, α_b torna-se positivo, α_c torna-se menos negativo, assim o coeficiente de expansão térmica volumétrico é maior para o molibdato de alumínio ($\alpha_l = \alpha_V/3 = 2,32 \times 10^{-6}/^{\circ}$ C).

Tabela 29 - Valores dos coeficientes de expansão térmica linear e volumétrica (α_a , α_b , α_c , α_V ,) da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂.

	Fração (x)	α _a [^o C ⁻¹] x 10 ⁻⁶	α _b [^o C ⁻¹] x 10 ⁻⁶	α _c [^o C ⁻¹] x 10 ⁻⁶	α _V [^o C ⁻¹] x 10 ⁻⁶	α _V /3 [°C ⁻¹] x 10 ⁻⁶
$Cr_2Mo_3O_{12}$	0,0	6,09	-1,73	-2,40	1,95	0,65
2 0 12	0,3	6,46	-0,63	-1,69	4,14	1,38
	0,5	6,65	0,08	-1,15	5,56	1,85
	0,7	7,04	0,71	-0,64	7,10	2,37
$AI_2Mo_3O_{12}$	1,0	7,35	0,57	-0,94	6,97	2,32

Figura 66 - Coeficientes de expansão térmica linear e volumétrica (α_a , α_b , α_c , α_V ,) da solução sólida Al_{2x}Cr_{2-2x}Mo₃O₁₂

4.1.5.3. Determinação do Coeficiente de Expansão Térmica da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂

Os coeficientes de expansão térmica linear (α_a , α_b , α_c) e volumétrica (α_v) da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂ estão registrados na Tabela 30 e ilustrados na Figura 67. Observa-se que para frações intermediárias (x = 0,5 e 0,7), os coeficientes de expansão térmica apresentam maiores valores do que para os compostos puros (molibdato de alumínio e molibdato de ferro).

Tabela 30 - Valores dos coeficientes de expansão térmica linear e volumétrica (α_a , α_b , α_c , α_v ,) da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂.

	Fração (x)	α _a [^o C ⁻¹] x 10 ⁻⁶	α _b [°C ⁻¹] x 10 ⁻⁶	α _c [^o C ⁻¹] x 10 ⁻⁶	α _V [°C ⁻¹] x 10 ⁻⁶	α _V /3 [°C ⁻¹] x 10 ⁻⁶
Fe ₂ Mo ₃ O ₁₂	0,0	7,36	-1,96	-2,26	5,16	1,72
	0,5	7,97	2,01	-0,12	9,87	3,29
	0,7	7,85	2,16	0,13	10,17	3,39
$AI_2MO_3O_{12}$	1,0	7,35	0,57	-0,94	6,97	2,32

Figura 67 - Coeficientes de expansão térmica linear e volumétrica (α_a , α_b , α_c , α_V ,) da solução sólida Al_{2x}Fe_{2-2x}Mo₃O₁₂.

4.1.6. Análise da perda de Peso por TGA

A análise térmica por TG para o Al₂Mo₃O₁₂, Fe₂Mo₃O₁₂ e Cr₂Mo₃O₁₂ é apresentada na Figura 68 – 70 respectivamente. Nos três casos, observa-se uma perda de massa menor que 0,2%, indicando perda de água superficial e que não há presença de água de cristalização. No entanto, há uma perda de massa crescente em torno de 750°C, que pode ser explicado pela estabilidade térmica dos molibdatos que não ultrapassa os 800°C [95], devido à decomposição do composto e posterior sublimação do MoO₃. Este fato foi verificado durante o desenvolvimento das experiências realizadas.

Figura 68 – Curva de análise térmica (TG) do Al₂Mo₃O₁₂.

Figura 69 - Curva de análise térmica (TG) do Fe₂Mo₃O₁₂.

Figura 70 - Curva de análise térmica (TG) do Cr₂Mo₃O₁₂.

4.2. Análise do composto HfMgMo₃O₁₂

O HfMgMo₃O₁₂ foi produzido utilizando o método de síntese descrito no item 3.1. Para uma verificação preliminar da presença de outras fases, foi feita uma análise por microscopia eletrônica de varredura (MEV) e EDS, Figura 71. Observa-se a presença de pequenas quantidades da fase, HfMo₂O₈ (identificada inicialmente por difração de raios-X). As análises semi-quantitativas fornecidas pelo EDS para as áreas 1 e 2 da Figura 71 são apresentadas nas Tabelas 31 e 32, onde se observa que os valores percentuais de massa teórico e experimental para os elementos que formam o HfMo₂O₈ e HfMgMo₃O₁₂ são razoavelmente comparáveis.

Figura 71 - Micrografia de feixe retro espalhado no MEV e análise de EDS do $HfMgMo_3O_{12}$

Tabela 31 – Análise EDS	para a área 1	l (Figura 7	1) identificada	como HfMo ₂ O ₈ .
-------------------------	---------------	-------------	-----------------	---

Elemento	% massa			
	Teórico	EDS		
Hf	35,82	32,52		
Мо	38,51	41,09		
0	25,67	26,39		

Elemento	% massa			
	Teórico	EDS		
Hf	26,15	27,78		
Mg	3,56	2,87		
Мо	42,17	41,64		
0	28,11	27,70		

Tabela 32 - Análise EDS para a área 2 (Figura 71) identificada como HfMgMo₃O₁₂.

A determinação do grupo espacial do HfMgMo₃O₁₂ foi baseada no item 3.3.2.1. utilizando o software Crysfire [88], o grupo espacial resultou ser o Pnma da estrutura ortorrômbica. Na Figura 72 é ilustrada o difratograma indexado correspondente, estes valores ainda não foram reportados na literatura já que o HfMgMo₃O₁₂ é um novo material.

O molibdato de háfnio-magnésio, HfMgMo₃O₁₂, foi analisado por difração de raios-X utilizando luz síncrotron *in situ* a alta temperatura. Os difratogramas foram obtidos a temperatura ambiente, 250, 500 e 750°C. A avaliação dos parâmetros de rede (a, b, c) e o volume na estrutura ortorrômbica (Pnma) em função da temperatura foi realizada por refinamento de LeBail [84], utilizando o software TOPAS [85]. Nesta avaliação a fase HfMo₂O₈ não foi considerada no refinamento.

Os valores dos parâmetros de rede estão registrados na Tabela 33. A variação dos parâmetros de rede em função da temperatura é apresentada nas Figuras 73 – 75, e a variação do volume da célula unitária, na Figura 76.

Dos resultados obtidos observa-se que o HfMgMo₃O₁₂ apresenta expansão térmica ao longo do eixo cristalográfico "b" e contração ao longo dos eixos "a" e "c" resultando numa pequena expansão térmica volumétrica "intrínseca" positiva.

Para o cálculo dos coeficientes de expansão térmica (α_a , α_b , α_c) e volumétrica (α_v) foram aplicados os mesmos conceitos que para as soluções sólidas. Assim, os valores obtidos foram: $\alpha_a = -3,44 \times 10^{-6}$ /°C, $\alpha_b = 7,98 \times 10^{-6}$ /°C, $\alpha_c = -1,52 \times 10^{-6}$ /°C, resultando numa baixa expansão térmica volumétrica, assim: $\alpha_l = \alpha_v/3 = 1,0 \times 10^{-6}$ /°C.

Figura 72 – Padrão de difração do HfMgMo₃O₁₂, estrutura ortorrômbica, grupo espacial Pnma.

Temperatura [°C]	a [Å]	$\sigma_{estimado}$	b [Å]	σ _{estimado}	c [Å]	σ _{estimado}	V [ų]	$\sigma_{estimado}$
25	9,57067	0,00011	13,15713	0,00017	9,48283	0,00011	1194,102	0,025
250	9,55938	0,00008	13,19138	0,00012	9,47572	0,00008	1194,901	0,018
500	9,55183	0,00004	13,21633	0,00006	9,47299	0,00004	1195,872	0,009
750	9,54680	0,00004	13,23333	0,00006	9,47236	0,00004	1196,705	0,010

Tabela 33 – Parâmetros de rede (estrutura ortorrômbica – Pnma) do composto $HfMgMo_3O_{12}$.

Figura 73 - Variação do eixo "a" (estrutura ortorrômbica – Pnma) do composto HfMgMo₃O₁₂ em função da temperatura.

Figura 74 - Variação do eixo "b" (estrutura ortorrômbica – Pnma) do composto HfMgMo₃O₁₂ em função da temperatura.

Figura 75 - Variação do eixo "c" (estrutura ortorrômbica – Pnma) do composto HfMgMo₃O₁₂ em função da temperatura.

Figura 76 - Variação do volume da célula unitária "V" (estrutura ortorrômbica – Pnma) do composto HfMgMo₃O₁₂ em função da temperatura.

A análise térmica por TG para o HfMgMo₃O₁₂ é apresentada na Figura 77. Observa-se uma perda de massa aproximada de 1,1%, indicando perda de água superficial e que não há presença de água cristalina. No entanto, há uma perda de massa crescente em torno de 750°C, que pode ser explicado pela estabilidade térmica dos molibdatos que não ultrapassa os 800°C.

Figura 77 - Curva de análise térmica (TG) do HfMgMo₃O₁₂